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Abstract

A successive extrapolated relaxation (SER) technique has been developed to solve elliptic partial difference

equations iteratively.

SER is more efficient than optimized successive over-relaxation and permits useful

solutions of waveguide modes using finite difference methods.

Introduction

Beaubien and Wexler!s>? have discussed the solution
of waveguide problems by finite difference methods.
The resulting method PDSOR (positive definite
successive over-relaxation) uses a one-dimensional
search technique to obtain the best value of the over-
relaxation factor. Such a technique suffers from
suboptimal choice of the over-relaxation factor during
the final steps of the solution. They cannot use the
SOOR (successive optimized over-relaxation) techniques
developed by Carré and others3»“;5 because their
matrix C although gositive definite does not possess
Young's Property A°.

A new method called SER (successive extrapolated
relaxation)? has been developed to solve elliptic
partial difference equations. It has been shown that
SER is at least as efficient as SOOR. Since SER does
not require that the system matrix possess Young's
Property A, it may be applied directly to the Beaubien
and Wexler formulation with a resulting increase in
speed. If the problem can be reformulated so that
the system matrix does possess Young's Property 4,
then a refinement of SER called SEOR (successive
extrapolated optimized relaxation) may be used which
optimizes the pertinent parameter,

The SER Method
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at the k,% lattice point after the nth iteration.

During the iterative solution, the sequence vén;Z),
- b
Vé?gl), Vé?i obtained by any successive relaxation
process may be plotted as shown in Fig. 1. If one
assumes that the approach to the asymptotic value is

characterized by an exponential behaviour
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If the sequence converged geometrically then (2) would
be the solution to the problem. If the convergence is
quasigeometric then (2) will be much closer to the

final answer than anl. In general the convergence is
b

linear and (2) has to be modified in order to assure
convergence.
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The first modification involves putting a bound on
the extrapolation as illustrated in Fig. 2. The
second modification is due to the fact that (2)
extrapolates the wrong way if there is an apparent
divergence in the sequence of potentials. This is
solved by reflecting the n-2 point as shown in Fig. 3.
The resulting extrapolation formula is given by
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and'y is a constant of the order of %.
optimized.

In SEOR v is

Illustrative Example

The dominant mode for the waveguide whose cross—
section is shown in Fig. 4 was solved on a CDC 6400.
It took 100 iterations and 12.3 seconds to obtain the
solution illustrated in Fig. 5. A five point formula
was used for this process. The error criterion in
this case was a residual ratio of 10-%,

Higher order modes require at least a thirteen
point operator, such as Beaubien and Wexler's!, in
order to have a positive definite system matrix. If
one uses a seventeen point operator published by Teeb,
in conjunction with the 5-point operator one has
Young's Property A. In this case one can use SEOR.

Conclusion

A more efficient algorithm has been presented for
the solution of finite difference problems. When
applied to microwave problems speedy solutions may be
obtained.
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BOUNDING THE EXTRAPOLATION PROCESS.
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REFLECTION OF THE (n-2) POINT IN ORDER TO
OBTAIN CORRECT EXTRAPOLATION.
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BOUNDARY CONDITIONS FOR THE DOMINANT TM MODE
IN A RIDGE WAVEGUIDE.

SYMMETRICAL GUIDE IS SHOWN.
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THE DOMINANT TM MODE IN A SYMMETRICAL RIDGE
WAVEGUIDE SHOWN IN FIGURE 4.



