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Abetract

A successive extrapolated relaxation (SER) technique has been developed to solve elliptic partial difference

equations iteratively. SER is more efficient than optimized successive over-relaxation and permits useful

solutions of waveguide modes using finite difference methods.

Introduction

1 2 havediscussed the SolutionBeaubien end Wexler ,

of waveguide problems by finite difference methods.
The resulting method PDSOR (positive definite

successive over-relaxation) uses a one-dimensional

search technique to obtain the best value of the over-
relaxation factor. Such a technique suffers from

suboptimal choice of the over-relaxation factor during

the final steps of the solution. They cannot use the

SOOR (successive optimized over-relaxation) techniques
developed by Carr6 and others3*4>5 because their

Young’s Property A~~sitive ‘efinite does not possess

matrix C although

A new method called SER (successive extrapolated

relaxation)’ has been developed to solve elliptic
partial difference equations. It has been shown that

SER is at least as efficient as SOOR. Since SER does

not require that the system matrix possess Young’s

Property A, it may be applied directly to the Beaubien

end Wexler formulation with a resulting increase in

speed. If the problem can be reformulated so that

the system matrix does possess Young’s Property A,

then a refinement of SER called SEOR (successive
extrapolated optimized relaxation) may be used which
optimizes the pertinent parameter.

The SER Method

Let us define V&~ to be the value of the potential

at the k,! lattice point after the nth iteration.

(n-2)
During the iterative solution. the seauence V. . ,

(n-1~
K,.K

‘k, ! ~ V$] obtained by any successive relaxation

process ma; be plotted as shown in Fig. 1. If one

assumes that the approach to the asymptotic value is
characterized by an exponential behaviour

(1)

7 that an approximation <~ ‘0then it has been shown

the asymptotic value is given by:

~v(n-1)12 - V&2) v~~

%3 = Zt:i;.l) (n-z) - ~ ~
9

(2)

- ‘k,z
“(n)

, ,

If the sequence converged geometrically then (2) would

be the solution to the problem. If the convergence is

quasigeometric then (2) will be much closer to the

final answer than VP]. In general the convergence is
.

linear and (2) has to be modified in order to assure

convergence.

The first modification involves putting a bound on

the extrapolation as illustrated in Fig. 2. The

second modification is due to the fact that (2)

extrapolates the wrong way if there is an apparent

divergence in the sequence of potentials. This is

solved by reflecting the n-2 point aa shown in Fig. 3.
The resulting extrapolation formula is given by

{

v(n)k ~ + 2(l+y) A2 ; A1A2 ~ O lA21:lA~l

= v(~)H1) k,t+(*2y)Al; AlA220 IA21’[AII

(n)
‘k$i

; A1A2 < 0

where

(n-1) - “(n-2)
‘1 = ‘k$f, k,!

(n) (n-1)
‘2 = ‘k,t - ‘k,!Z

(3)

(4)

(5)

andy is a constant of the order of $. In SEOR y is
optimized.

Illustrative Example

The dominant mode for the waveguide whose cross-
section is shown in Fig. 4 was solved on a CDC 6400.

It took 100 iterations and 12.3 seconds to obtain the

solution illustrated in Fig. 5. A five point formula

was used for this process. The error criterion in

this case was a residual ratio of 10-4.

Higher order modes require at least a thirteen

point operator, such as Beaubien and Wexler’sl, in

order to have a positive definite system matrix. If
one uses a seventeen point operator published by Tee8,

in conjunction with the 5-point operator one has
Youn~’s Property A. In this case one can use SEOR.

Conclusion

A more efficient algorithm has been presented for

the solution of finite difference problems. When

applied to micrcwave problems speedy solutions may be
obtained.
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FIG. 2 BOLNDING THE EXTRAPOLATION PROCESS.
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BOUNDARY CONDITIONS FOR THE DOMINANT TM NODE
IN A RIDGE WAVEGUIDE. ONLY ONE-HALF THE

SYMMETRICAL GUIDE IS SHOWN.
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5 THE DOMINANT TN MODE IN A SYMMETRICAL RIDGE

WAVEGUIDE SHOWN IN FIGURE 4.


